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Comparison of different Quantitative Susceptibility
Mapping (QSM) algorithms in brain tissue

Sophia Schmidt, Stephanie Mangesius, Elke R. Gizewski, Daniel Sieber, and Christoph Birkl

Abstract—Quantitative susceptibility mapping (QSM) is a novel
post-processing technique that computes the underlying suscep-
tibility distribution from MRI phase data. Strong susceptibility
shifts introduce streaking artifacts in the reconstructed map
that remain challenging to reduce. In this study, magnitude and
phase data were acquired from the brain of one healthy and
one glioblastoma patient using a multi-echo gradient-recalled
echo (GRE) sequence. Several investigations were conducted,
including the performance evaluation of three different algo-
rithms, namely MEDI, RTS, and STAR-QSM, the comparison
between echo-time (TE)-dependent and multi-echo QSM, and
the separate calculation of healthy and tumor-affected brain
tissue with subsequent merging. Visual inspections and data
analysis with MATLAB showed that the different algorithms per-
formed well in healthy brain conditions, but introduced artifacts
when reconstructing large dynamic ranges in susceptibilities.
The combination of multi-echo QSM together with excluding
the glioblastoma region during reconstruction resulted in high-
quality susceptibility maps. Subsequent superposition of the
missing tumor region composed of a full-brain susceptibility map
with reduced artifacts, offering promising advancements in QSM
accuracy for pathological brain conditions.

Index Terms—Quantitative Susceptibility Mapping, Glioblas-
toma, Masking, TE-dependent QSM, Mulit-echo QSM, Super-
posed, Artifact Reduction.

I. INTRODUCTION

Scientists have developed a post-processing technique, known
as Quantitative Susceptibility Mapping (QSM), to extract in-
formation about the magnetic susceptibility distribution in bio-
logical objects or samples using MRI phase measurements [1].
By quantifying the magnetic susceptibility properties of tis-
sues, QSM offers a possibility to non-invasively assess changes
in the brain with improved quality and contrast. Therefore,
enhancing diagnostic specificity, treatment planning, and mon-
itoring treatment response in glioblastoma patients, for exam-
ple. Deistung et al. [2] showed that QSM can be used to quanti-
tatively differentiate between paramagnetic blood deposits and
diamagnetic calcifications within a glioblastoma. The authors
state, that the presence of diamagnetic calcifications may
represent an important biomarker for guiding therapy decisions
and evaluating treatment responses and outcomes. Making it
a valuable tool for differentiating and assessing the grade of
brain tumors. Zeng et al. [3] found a significant correlation
between glioma grading and morphological changes in QSM
and stated that QSM has promising potential in evaluating
gliomas. Furthermore, according to the findings of Reith et

S. Schmidt and D. Sieber are with the Department of Medical and Health
Technologies, MCI, Innsbruck, Austria

S. Mangesius, E. Gizewski and C. Birkl are with the Department of
Neuroradiology, Medical University, Innsbruck, Austria

al. [4], a potential biomarker for tumor severity grading was
identified by means of differences in iron content in the basal
ganglia, accessible only with QSM.
However, QSM is not yet adapted in clinical settings due to the
lack of precise and reliable reconstruction algorithms that pro-
duce sufficient artifact-free susceptibility maps. Particularly in
pathological conditions with strong susceptibility shifts, huge
streaking artifacts occur that remain challenging to reduce.
Additionally, physicians and radiologists are not adequately
familiar with the new contrast of the resulting images, which
hinders a meaningful interpretation.
Motivated by the emerging research field of QSM, this paper
aims to conduct several investigations, both in a healthy brain
subject and in a patient subject suffering from glioblastoma. To
find an algorithm that is closest to artifact-free susceptibility
reconstruction, different open-source QSM algorithms were
used that participated in the ”2016 Reconstruction Chal-
lenge” [5], namely MEDI, RTS, and STAR-QSM. In the
healthy subject, it is first investigated how susceptibility values
temporally change over the echo time in defined regions of
interest (ROI) with a subsequent evaluation of the performance
of the used algorithms. For the tumor patient, the performance
of the different algorithms is tested as well with changing
various brain masks as input. Thereafter, susceptibility maps
reconstructed at single echo times (TE-dependent QSM) are
compared with multi-echo QSM results. Finally, with the
overall best results from the previous evaluation, a separate
QSM calculation of the healthy and tumor-affected brain
region is performed with a subsequent merging of both results,
composing a superposed whole-brain susceptibility map.

II. METHODS

In this study, several investigations for both a healthy patient
(H) and a glioblastoma patient (G) were conducted, which are
listed below. These statements are examined using the methods
explained in the following sections. With this approach, differ-
ences between applying QSM algorithms, namely MEDI, RTS,
and STAR-QSM, to a healthy and a pathological condition
were studied.
H 1 TE-dependent QSM investigating the influence of echo

time on susceptibility values
H 2 General QSM performance of the different algorithms

by analyzing various quantitative error metrics
G 3 Algorithm performance using different input masks in

TE-dependent QSM
G 4 Comparison of multi-echo QSM and TE-dependent QSM
G 5 Separate QSM calculation of healthy and tumor-affected

brain tissue with subsequent merging
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A. Datasets

Fully anonymized datasets of one healthy and one
glioblastoma patient were provided by the Department
of Neuroradiology, Medical University in Innsbruck. The
study was approved by the local Ethics Committee (EK
1226/2020). Magnitude and phase images for both datasets
with whole-brain coverage were acquired on a 3 Tesla (T)
Siemens Skyra scanner using a 3D spoiled GRE sequence
and adaptive combine algorithm for coil combination with the
following parameters: Echo time (TE) = 4.92 : 4.92 : 29.51ms,
repetition time (TR) = 35.0ms, flip angle (FA) = 15◦,
bandwidth (BW) = 240Hz/pixel, matrix size = 180x224x144.
The total acquisition time was 5:04min for both subjects.
Additionally, T1-weighted images with a T1 MPRAGE
sequence were acquired on the same scanner with
the following parameters: inversion time (TI) = 1.1ms,
TE = 0.3ms, TR = 2.11ms, FA = 8◦, BW = 250Hz/pixel,
matrix size = 180x224x144. The total acquisition time was
3:37min.

B. Mask generation

Individual binary masks were created using FMRIB Software
Library (FSL) [6] and Insight Toolkit (ITK)-SNAP [7], which
were later applied to the different algorithms. In the healthy
dataset, the brain mask was generated using FSL brain extrac-
tion tool (BET) [6] (threshold = 0.5) from the GRE magnitude
image of the last echo. For the glioblastoma patient, brain
masks were created for each individual echo (TE1 − TE6)
of the GRE sequence from their corresponding magnitude
images. The masks became smaller as the echo time increased
due to signal dropout around regions with high gradients [8],
such as brain or tumor boundaries. Consequently, the tumor
region is excluded in the last echo (TE6). Additionally, a T1
mask was generated for the glioblastoma patient using BET
on the T1-weighted magnitude image acquired in a separate
scan. To align the T1 mask with the GRE sequence, linear
registration with FSL FLIRT was performed.
To estimate QSM only for the tumor-affected brain region, an
inverse tumor mask was generated based on the E6 mask. The
mask was dilated using FSL Maths. Figure 1 demonstrates an
adapted processing scheme in order to investigate a separate
QSM calculation on the healthy and tumor-affected brain
region with subsequent merging (Statement G 5).

C. Algorithms

QSM was performed in MATLAB (The MathWorks, Inc.
Natick MA, USA) using three open-source algorithms:

1) MEDI is incorporated in the MEDI toolbox from the
Cornell MRI research lab (http://pre.weill.cornell.edu/
mri/pages/qsm.html)

2) RTS is available from Christian Kames’ GitHub reposi-
tory (https://github.com/kamesy/QSM.m)

3) STAR-QSM is embedded in the STI Suite toolbox from
Hongjiang Wei and Chunlei Liu from the University of
California, Berkeley, USA (https://people.eecs.berkeley.
edu/∼chunlei.liu/software.html)

Fig. 1: Illustration of the QSM processing scheme to investigate
Statement G 5. A tumor brain mask was generated using FSL BET
from the sixth echo magnitude image. By inverting the brain mask,
the tumor mask was created and dilated. On the left side, both masks
were merged, resulting in a whole brain mask, before performing
QSM. On the right side, QSM was calculated on both masks
individually with subsequent merging of the resulting susceptibility
maps.

Each algorithm employs individual methods for the post-
processing steps that are summarized in Table I. These include
phase unwrapping to eliminate aliasing from the wrapped
phase, background field removal to separate the background
from the local field, and dipole inversion to solve the inverse
problem from field perturbation to magnetic susceptibility [9].
The reconstructed susceptibility maps were stored separately
and further evaluated using ITK-SNAP and MATLAB for
visual and statistical analysis, respectively.

TABLE I: Comparison of the methods in the used algorithms.

MEDI RTS STAR-QSM

Phase
unwrapping

Region
growing
algorithm

Laplacian
phase
unwrapping

Laplacian
phase
unwrapping

Background
field removal

PDF V-SHARP V-SHARP

Dipole
inversion (DI)

Morphology
Enabled DI

Rapid Two-
Step DI

Streaking Arti-
fact Reduction

D. QSM data analysis

To investigate changing regional susceptibility values (State-
ment H 1), six regions of interest (ROI) were defined. For
that, the T1 weighted magnitude image of the healthy subject
was registered to the GRE sequence with FSL FLIRT. To
generate the individual segments, FSL FIRST, an automated
segmentation tool, was then applied and afterward binarized in
a custom MATLAB script. Figure 2 shows the corresponding
segments, namely caudate, putamen, and pallidum from an
axial, coronal, sagittal, and 3D volume view.
To evaluate algorithm performance (Statements H 2 and G 3),
the quantitative error metrics from the ”2016 Reconstruction
Challenge” [5] were adapted in MATLAB. Because of the
lack of a gold-standard ground truth, MEDI and RTS were
compared to the STAR-QSM algorithm as a reference. The
error metrics include:

http://pre.weill.cornell.edu/mri/pages/qsm.html
http://pre.weill.cornell.edu/mri/pages/qsm.html
https://github.com/kamesy/QSM.m
https://people.eecs.berkeley.edu/~chunlei.liu/software.html
https://people.eecs.berkeley.edu/~chunlei.liu/software.html
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Fig. 2: Illustration of the six defined regions of interest from different
views. From left to right: axial, coronal, sagittal, and 3D volume.

• The root mean squared error (RMSE) measures the aver-
age difference between pixel values of the reconstructed
QSM image and the ground truth image [5]. A lower
RMSE indicates a closer match to the reference image.

• The high-frequency error norm (HFEN) quantifies devi-
ations at high spatial frequencies. It involves applying a
Laplacian of a Gaussian (LoG) filter to both the reference
and input volumes, then calculating the L2 norm of the
difference and normalizing it by the LoG-filtered refer-
ence [10]. Smaller values indicate better performance.

• The structural similarity index (SSIM) aims to better
represent the visual similarity between the image under
consideration and the reference image [11]. It is normal-
ized between 0 and 1, with 1 being the best possible
result.

III. RESULTS

A. TE-dependent QSM on the healthy dataset (H1)

A single axial slice from the resulting susceptibility maps of
the healthy dataset is shown in Figure 3. TE-dependent QSM is
performed on the phase images at each echo time (TE1−TE6)
using the MEDI, RTS, and STAR-QSM algorithms, from the
first to the third row respectively. For MEDI and RTS, the
susceptibility maps are scaled from - 1 to 1 ppm, due to a
greater variation in susceptibility values, and for STAR-QSM
from - 0.15 to 0.15 ppm, indicated by the color bar on the right
side. Upon visual inspection, the results are similar across the
algorithms, with increased contrast observed in higher echoes.
However, the results of RTS appear overly smoothed.

Fig. 3: Reconstructed susceptibility maps from the different algo-
rithms at each echo time on the healthy dataset. Susceptibility values
for MEDI and RTS are scaled from - 1 to 1 ppm, and for the STAR-
QSM from - 0.15 to 0.15 ppm.
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Fig. 4: Changes of mean susceptibility values over echo times in
the defined regions of interest caudate (left), putamen (middle), and
pallidum (right) for the three different algorithms.

The mean susceptibility values from the resulting quantitative
susceptibility maps in the defined ROI from Section II-D
were calculated and plotted in MATLAB (see Figure 4). This
evaluation demonstrates that the susceptibility values in each
ROI increase with the echo time for each algorithm, correlating
to the visual findings from above. Compared to a slight overall
increase in susceptibility values for the STAR-QSM algorithm,
the gain in susceptibility for the other two algorithms is much
higher. Table II summarizes the mean susceptibility values and
standard deviation in the third echo (TE3 = 14.7ms). It
shows that MEDI and RTS have susceptibility values that are
10 times higher than STAR-QSM.

TABLE II: Mean susceptibility value and standard deviation at
TE3 = 14.7ms in the ROI for MEDI, RTS and STAR-QSM.

Caudate χ
(ppm± ppm)

Putamen χ
(ppm ± ppm)

Pallidum χ
(ppm± ppm)

MEDI 0.3260± 0.1181 0.2924± 0.1503 0.5312± 0.1595
RTS 0.2202± 0.0829 0.2622± 0.1384 0.4425± 0.1258
STAR-QSM 0.0283± 0.0117 0.0248± 0.0223 0.0410± 0.0207

B. General performance of algorithms on the healthy dataset
(H2)

In order to compare the performance of MEDI and RTS to
the reference algorithm (STAR-QSM), a metrics analysis was
conducted as described in Section II using MATLAB. Figure 5
displays the different metrics in each subplot. It can be
observed that RTS outperformed MEDI in terms of RMSE and
HFEN, indicating greater agreement with the reference values
of the third algorithm. Conversely, MEDI was found to be
more structurally similar to STAR-QSM than RTS, indicated
by the SSIM. Both algorithms exhibited high fluctuations in
the first echoes, with the last echo of RTS displaying the
most dissimilar result compared to the reference image. In
general, lower echo times indicated a higher level of agreement
compared to higher echo times across all three metrics, except
for the second echo in the SSIM.
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Fig. 5: Metric evaluation of MEDI and RTS relative to STAR-QSM
on the healthy dataset. From left to right: RMSE, HFEN and SSIM.

C. Algorithm performance using different input masks on the
glioblastoma dataset (G3)

For the TE-dependent QSM calculation on the patient dataset,
the different masks were utilized to investigate the perfor-
mance for all three algorithms in each case.
Figure 6 shows the reconstructed susceptibility maps at the
same single axial slice, with the individual masks, E6 mask,
and T1 mask applied, respectively. To enhance the compara-
bility of the occurring artifacts and reconstruction accuracy,
the susceptibility values were scaled from the local minimum
to the local maximum of each map.
In Figure 6a the individual masks were applied, resulting in a
hole in the last echo of the reconstructed map. Although the
tumor region is excluded in the last echo, high susceptibility
shifts around the tumor outline are visible. Furthermore,
each algorithm erodes the input mask differently, affecting
brain delineation and tumor hole size. Visually compared, the
reconstructed maps are relatively similar to each other. The
RTS algorithm exhibits shadowing artifacts in the posterior
part of the brain, which increase with the echo time. Ring-
shaped artifacts also appear around the tumor region, and the
maps appear smoothed compared to other algorithms, lacking
structural details in white and gray matter.
When applying the E6 mask (Figure 6b) similar effects appear
as with the individual masks. However, RTS and STAR-QSM
show fewer artifacts induced by the tumor region than in
the evaluation before. More structural details can be seen,
especially in lower echoes. In general, all algorithms perform
slightly better when the E6 mask is applied. Nevertheless, sus-
ceptibility information in the glioblastoma region are missing.
Using the T1 mask (Figure 6c) results in comparable sus-
ceptibility maps for MEDI and STAR-QSM. However, the
STAR-QSM algorithm exhibits more pronounced ring-shaped
artifacts around the tumor area, which are not prominent when
using the E6 mask. RTS shows noticeable streaking artifacts
that are more prominent in higher echo times, especially in
the frontal lobe area, significantly affecting QSM quality.
A metric analysis of the influence of the individual masks, E6
mask, and T1 mask on the susceptibility maps in each echo
was performed in MATLAB. The evaluation is displayed in
Figure 7 representing the RMSE, HFEN, and SSIM of MEDI

(a) Susceptibility maps from the different algorithms at each echo with the
individual masks applied.

(b) Susceptibility maps from the different algorithms at each echo with the
E6 mask applied.

(c) Susceptibility maps from the different algorithms at each echo with the
T1 mask applied.

Fig. 6: Reconstructed susceptibility maps of the different algorithms
with the (a) individual masks (b) E6 mask and (c) T1 mask applied.
In each case, the susceptibility values are scaled from the minimum
to the maximum of the respective map.

and RTS relative to STAR-QSM. Shades of blue depict the
performance of MEDI, and shades of red the performance of
RTS. It is noteworthy that the metric evaluation of the healthy
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and the tumor patient correlates in a way that RTS outperforms
MEDI for RMSE and HFEN, but the opposite is observed
for SSIM. For the glioblastoma patient, the metric evaluation
reflects the visual findings from above. RTS and MEDI al-
gorithms show similar evaluations for individual masks and
the E6 mask, with minor deviations. Both masks share the
same metric values in the last echo since the masks are equal.
However, the T1 mask exhibits worse performance compared
to other masks in RMSE, HFEN, and SSIM evaluations.
Although not evident in visual evaluation, the plot indicates
that the T1 mask also performs worse in MEDI for the first
two metrics compared to other masks. However, no significant
rash of the T1 mask is seen with SSIM.
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Fig. 7: Metrics evaluation of MEDI (shades of blue) and RTS (shades
of red) relative to STAR-QSM on the tumor patient dataset. Straight,
dashed and dotted lines represent the individual, E6, and T1 masks,
respectively. From left to right: RMSE, HFEN and SSIM.

D. Comparison multi-echo QSM and TE-dependent QSM (G4)

The comparison between multi-echo QSM and TE-dependent
QSM was conducted for MEDI and STAR-QSM since the
RTS MATLAB script lacks of a combination of magnitude
or phase images. Figure 8 displays the results with the E6
and T1 masks applied to MEDI and STAR-QSM in the first
row, followed by TE-dependent results in the second row.
TE-depenendet susceptibility maps were selected that showed
most similar susceptibility ranges as the results of multi-echo
QSM. In order to compare the different results within an
applied algorithm, the susceptibility values for MEDI results
were scaled from - 0.3 to 0.4 ppm and from - 0.03 to 0.05 ppm
for STAR-QSM. Therefore, MEDI reconstructed susceptibility
values that are 10 times higher than the ones from STAR-
QSM.
From a visual perspective, MEDI produces artifacts of low
susceptibility values in the anterior part and high susceptibility
values in the posterior part of the brain when performing multi-
echo QSM. The results appear overly smooth compared to
TE-dependent QSM. For STAR-QSM, the multi-echo QSM
image with the E6 mask used results in an almost artifact-free
susceptibility map. Similar results can be obtained with the
TE-dependent first echo image, but with less contrast between
gray and white matter. Only the high susceptibility shifts in
the remaining tumor region, which were not properly masked,

cause halo artifacts in the vicinity of this region. However,
when using the T1 mask, shadow artifacts around the tumor
region are more evident in both multi-echo and TE-dependent
QSM.

Fig. 8: Reconstructed QSM images from MEDI and STAR-QSM at
the same axial slice. Comparing multi-echo QSM (first row) and TE-
dependent QSM (second row) using the E6 and T1 mask.

E. Separate QSM calculation of healthy and tumor-affected
brain tissue with subsequent merging (G5)

Figure 9 shows the comparison of the adapted processing
scheme presented in Figure 1. The effect of a separate QSM
calculation of healthy and tumor-affected brain tissue, with
subsequent merging of the individual results (QSM merging)
is compared to a regular QSM reconstruction using a whole-
brain mask (mask merging). To ensure comparability, all maps
were scaled from - 0.03 to 0.05 ppm.

Fig. 9: Reconstructed susceptibility maps in one axial slice by ap-
plying the E6 brain mask and its inverse E6 tumor mask. Comparing
the influence of whole brain QSM calculation (mask merging) and
separate healthy and tumor-affected brain tissue calculation with
subsequent merging (QSM merging). The difference image is shown
on the right.

From a visual perspective, it can be seen that QSM merging
results in a less artifact-prone susceptibility map compared to
the mask merging method. While shadowing artifacts appear
in the mask merging result, they are less prominent using QSM
merging. The difference image demonstrates, that applying
the two methods does not affect the healthy brain tissue, but
deviations around the tumor region are apparent.
Figure 10 displays straight-line profiles of susceptibilities
across the tumor region (from right to left in radiological
conversion) for the two different methods. The maps differ
most outside the tumor region, with mask merging (red line)
showing higher negative susceptibility values correlating to
halos around the tumor compared to QSM merging (orange
line). Intratumoral variations are present in both methods but
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QSM merging shows fewer fluctuations compared to mask
merging.
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Fig. 10: Straight-line profiles of susceptibility values across the
tumor: Mask merging (red), and QSM merging (orange).

IV. DISCUSSION

The focus of the underlying study was to investigate key
statements related to the contrast enhancement of susceptibility
maps in TE-dependent QSM in the healthy subject, algorithm
performance evaluation in both patients, and in the case of
the glioblastoma subject the use of multi-echo QSM, and the
proposal of a superposed QSM method.
The investigations of Statement H 1 revealed that susceptibility
map contrast enhances with increasing echo times. Researchers
found out that setting the echo time to the average T2* of gray
and white matter results in maximum phase contrast between
them [12, 13]. Thus, the sixth echo (TE6 = 29.51ms) pro-
vided the highest contrast for all algorithms. Sood et al. [14]
conducted a study of regional dependence of susceptibility
maps on echo time. The authors reconstructed GRE phase im-
ages (TE1 = 2.04ms, 30 echoes, ∆TE = 1.53ms) for five
healthy volunteers at 7 T and found that mean susceptibility
values decreased in the putamen and pallidum over time, while
the caudate showed an initial increase followed by a decrease.
Compared with this, the underlying results reveal a different
behavior, as depicted in the graphs of Figure 4.
The mean susceptibility values at TE3 = 14.7ms echo
time in the defined ROI from Table II can be compared to
mean values calculated in the study of Sood et al. [14] at
TE = 15.81ms. They mapped susceptibility values in the
caudate (0.040 ± 0.015 ppm), putamen (0.025 ± 0.025 ppm),
and pallidum (0.079 ± 0.015 ppm). These results show the
highest correlation with the values reconstructed by the STAR-
QSM algorithm, although they still differ. The variations can
be attributed to differences in data acquisition procedures,
reconstruction method, definition and segmentation of ROI,
selection of reference tissue, subject attributes, and echo time

choice.
However, high concentrations of iron are known to occur in
brain regions such as the putamen and pallidum, whereas the
caudate show a minor accumulation of iron [15, 16] which is
best reflected with the RTS algorithm.
To evaluate the algorithm performance on a healthy dataset
(Statement H 2), quantitative error metrics were computed for
MEDI and RTS, with STAR-QSM chosen as the reference
due to comparable susceptibility values found in literature
[17]. RTS outperformed MEDI in terms of agreement (RMSE
and HFEN) with the reference, while MEDI showed greater
structural similarity (SSIM) to STAR-QSM. Generally, lower
echo times produced better results across all metrics, except
the second echo. As the echo time increases, agreement, and
similarity decrease in both algorithms.
The graphs in Figure 5 are very similar for the first two
metrics but with a clear offset. This offset may be attributed
to the differences in susceptibility values, which differed
more between MEDI and STAR-QSM than between RTS and
STAR-QSM. Additionally, the high percentages in RMSE and
HFEN may also be caused by the erroneous susceptibility
values reconstructed by MEDI and RTS.
In the ”2016 Reconstruction Challenge” [5] the performance
of susceptibility maps from 27 algorithms was evaluated,
including MEDI and RTS. The algorithms were compared
to a Susceptibility Tensor Imaging (STI) algorithm that re-
constructed susceptibility values of healthy patient data ac-
quired from 12 head orientations. RTS outperformed MEDI
in terms of RMSE (69%) and HFEN (68.9%), while MEDI
scored higher in SSIM (0.93). These results correspond to
the finding of the underlying study, even if the values differ
significantly. However, it is worth noting that the participants
in the challenge optimized their algorithms by tuning regu-
larization parameters. Whereas in this study, all algorithms
were run without changing any regularization parameters, most
probably resulting in erroneous high and low susceptibility
values for MEDI and RTS. Moreover, using STAR-QSM as a
reference requires critical consideration, as artifacts in STAR-
QSM itself could influence the results. One way to better
evaluate the performance of the algorithms would be to refer
to a gold standard technique, such as the one used in the
reconstruction challenge or the Calculation Of Susceptibility
through Multiple Orientation Sampling (COSMOS) method.
Furthermore, Langkammer et al. [4] pointed out that the
RMSE is usually an inadequate measure for assessing visual
quality when over-smoothing through higher regularization
constraints appears. This problem can be observed in the
results of RTS as well. Although it revealed a better RMSE
compared to MEDI, it resulted in an overly-smoothed recon-
structed susceptibility map.
To overcome the limitations of relying solely on three fi-
delity metrics, an expert visual rating could provide a more
comprehensive performance assessment, as demonstrated in
the ”Reconstruction Challenge 2.0” [18]. In addition, using
an open-source algorithm that does not require adjustment of
the regularization parameters across applications and datasets
could reduce the problem of introducing erroneous suscepti-
bility values. This could be adventurous, especially for inex-
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perienced users and clinical applications. Stewart et al. [19]
developed a QSM framework, QSMxT, with a straightforward
implementation, resulting in robust results across all datasets
by using default parameters.
The QSM results for the healthy patient showed only minor
differences in reconstruction, particularly in terms of artifact
generation. However, the performance of the algorithms for the
glioblastoma patient varied significantly. This can be attributed
to the fact that present QSM algorithms perform well in recon-
structing healthy subject data, but QSM across high dynamic
ranges of susceptibility values still remains challenging [19].
If no sufficient regularization is implemented, the unreliable
phase introduces streaking artifacts on the final susceptibility
map. Although the STAR-QSM algorithm attempted to address
this issue by reducing streaking artifact propagation through
specific steps, artifacts still appear in the susceptibility map.
Next to the STAR-QSM algorithm, other recent techniques
address this problem as well [19]–[21] by adapting the pro-
cessing steps of QSM differently.
TE-dependent QSM measurements were performed, in order
to investigate the algorithm performance using different masks
on the tumor patient (Statement G 3). More precisely, the
first masks were generated from the individual magnitude
images of the varying echo times of the GRE sequence using
FSL BET. The higher the echo time, the smaller the created
mask. With increasing echo time, regions with rapid signal
dropout are removed, resulting in an exclusion of the tumor
region for the last echo brain mask. The individual masks,
the E6 mask from the sixth echo only, and the T1 mask from
the T1 weighted magnitude image were applied to the three
different algorithms. The results showed that using the E6
mask led to overall good susceptibility map reconstructions in
all algorithms, with the STAR-QSM algorithm performing best
compared to MEDI and RTS. When other masks were applied,
each algorithm exhibited artifacts like shadowing, streaking
artifacts, and over-smoothing. The metric evaluation further
reinforces this conclusion, with the severe streaking artifacts
in RTS using the T1 mask being especially apparent in the
course of each metric graph.
Although neglected in most of the QSM literature, signal
masking to identify reliable phase signal regions for back-
ground field removal and dipole inversion is a crucial step
[19] and influences the final susceptibility map, as demon-
strated in the underlying results. Applying a smaller mask can
reduce artifacts at the periphery of the ROI, but also comes
with the risk that valuable phase data is rejected from the
reconstruction. Excluding unreliable phase shifts, caused by
pathological conditions for example, from reconstruction can
be problematic in clinical settings when information about that
tissue structure is of interest.
Recent deep learning-based QSM approaches showed good-
quality susceptibility maps without the error-prone brain mask-
ing step [22, 23], which might be adventurous for clinical
applications. Nevertheless, additional research and validation
are necessary to evaluate the suitability of these methods [24].
To investigate Statement G 4, multi-echo QSM was performed
using MEDI and STAR-QSM with the E6 and T1 masks and
compared to TE-dependent measurements from before. The

evaluations showed that the susceptibility maps produced with
multi-echo STAR-QSM and the E6 mask showed the fewest
artifacts.
Biondetti et al. [25] studied the accuracy and precision of
multi-echo versus TE-dependent QSM using Laplacian-based
methods for phase unwrapping and background field removal.
Their research, involving 10 healthy volunteers on a 3 T scan-
ner, revealed that multi-echo QSM resulted in higher regional
accuracy in comparison to TE-dependent QSM, particularly at
shorter TEs and in high-susceptibility regions. Generally, TE-
dependent QSM can reveal intrinsic tissue property informa-
tion [14] and benefits from noise reduction at longer TE values,
while multi-echo QSM can provide TE-independent field maps
with optimized SNR and reduced phase noise propagation in
background field removal [25]. Multi-echo QSM with a larger
number of combined echoes showed even less phase noise
propagation into the final susceptibility map [26].
As STAR-QSM algorithms in multi-echo QSM showed the
least artifact-prone reconstructed maps and susceptibilities
closest to literature values, further statements were investigated
using this method.
To investigate Statement G 5, a separate QSM calculation pro-
cess for healthy and tumor-affected brain tissue was proposed
to prevent phase errors from high-frequency shifts in the tumor
region propagating into dominant QSM artifacts. The brain
mask of the sixth echo was inverted to obtain the tumor mask.
QSM calculations were performed on both masks with STAR-
QSM, resulting in two individual susceptibility maps. One
map contained susceptibility values without most of the tumor
contribution, and the other map displayed only susceptibility
values in the tumor region. Combining the two susceptibility
maps yielded a superposed, whole-brain susceptibility map,
outperforming regular full-brain mask reconstruction methods.
In a similar study, Sun et al. [21] investigated a superposed
dipole inversion method for QSM in intracranial hemorrhage
(ICH). Their optimized reconstruction scheme combined a
mask-inversion process with ICH isolation and subsequent
superposition reconstruction, resulting in high-quality QSM
images from eight ICH subjects. In comparison to this study,
the authors generated the non-ICH brain mask after air/tissue
background field removal by setting a threshold on the recon-
structed QSM image and performed a second background field
removal of air/tissue background and ICH dipole field. This
represents an automated segmentation algorithm by adding
an extra term to the regularization in the dipole inversion
step, to mask out the corrupted phase introduced by the
ICH. The results of the underlying study showed that the
QSM merging method reduces artifacts compared to the mask
merging method, but high susceptibility shifts still occur at
the edge of the tumor, that were not properly masked using
FSL BET. To enhance the minimization of artifact propagation
to the final susceptibility map, precise masking of the tumor
region by manual segmentation may lead to more sophisticated
results. Most QSM techniques employ morphological erosion
on input masks to improve background field removal and
dipole inversion accuracy. Therefore, the tumor mask had to be
dilated before applying it to the QSM pipeline. This dilation
could create holes in the superposed whole-brain image when
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merging the resulting QSM images. Further dilation, however,
could lead to an overlap of both results, expanding the ex-
cluded brain mask region.
Nevertheless, the proposed method for a separate QSM cal-
culation of the healthy and tumor-affected brain tissue outper-
formed any other method applied in this study, resulting in
susceptibility maps with reduced streaking artifacts.

V. CONCLUSION

The present study showed that the propagation of streaking
artifacts can be reduced by incorporating multi-echo QSM
and excluding regions with high susceptibility shifts during
reconstruction. Subsequent superposition of the missing sus-
ceptibility information composes of a full-brain susceptibility
map with high quality and reduced artifacts. However, for any
further examination and application, it is crucial to conduct in-
vestigations based on a larger cohort of patients. An expanded
sample size will enable a more comprehensive evaluation of
the proposed methods, allowing for precise determination of
their accuracy, reproducibility, and reliability.
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